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Employing the Monte Carlo simulation technique, we have investigated several phase transitions ex-
hibited by a coupled XY model in two dimensions. The model is based on the Hamiltonian proposed by
Bruinsma and Aeppli [Phys. Rev. Lett. 48, 1625 (1982)]. The simulation results demonstrate the ex-
istence of a new type of phase transition in which two different orderings are simultaneously established
through a continuous transition. The unique nature of this phase transition provides a plausible ex-
planation for our recent high-resolution heat-capacity data near the smectic- A-hexatic-B transition of

two-layer free-standing films.

PACS number(s): 61.30.—v, 64.70.Md, 64.60.—i

In light of high-resolution x-ray diffraction studies [1]
and heat-capacity measurements [2] near the bulk
smectic-4 (Sm-A) —hexatic-B (Hex-B) transition in the
liquid-crystal compound n-hexyl-4'-n-pentyloxybiphenyl-
4-carboxylate (650BC), many theoretical models [3,4]
have been proposed to explain the nature of this intrigu-
ing phase transition. The x-ray diffraction study [1] of
thick 650BC films in the Hex-B phase not only revealed
long-range bond-orientational order with short-range po-
sitional order, indicative of hexatic order in three dimen-
sions, but also displayed additional peaks characteristic
of herringbone order. So far, the degree of the
herringbone order in the Hex-B phase (short- or long-
range order) has not been carefully studied by
either x-ray or electron-beam diffraction experiments.
Assuming that only the bond-orientational order
[|W| exp(i6y)] [5] becomes long ranged through the Sm-
A —Hex-B transition, this transition should be a member
of the XY universality class. The heat-capacity critical
exponent should, therefore, be equal to a=—0.007 [6].
If the system is near a tricritical point, however, the ex-
ponent is predicted to be a=0.5. Detailed heat-capacity
measurements on bulk samples have yielded very sharp
heat-capacity anomalies associated with the Sm-A4 -
Hex-B transition with no detectable thermal hysteresis.
Moreover, the temperature variation of the heat capacity
near the Sm-A —Hex-B transition of 650BC has been
successfully fit to a power-law expression (szlt|_"‘),
giving a=0.601%0.03 [2], which is clearly not consistent
with the simple XY critical exponent (a=—0.007) in
three dimensions. Several theoretical advances [3,4] have
therefore been made on the basis of the assumption that
the transition is in the vicinity of a tricritical point.

The bond-orientational order (¥) can be represented
by an XY order parameter [¥=|¥|exp(i61)] [5]. Be-
cause the Hex-B phase exhibits only short-ranged posi-
tional order, Bruinsma and Aeppli [3] have argued that
the herringbone order (®) can also be represented by an
XY order parameter [®=|®|exp(i2¢)]. To formulate
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the Landau free energy F, which describes both the hex-
atic and the herringbone order, one notices that the hex-
atic order possesses sixfold symmetry, while rotating a
herringbone pattern by 180° leaves it unchanged. Thus
the coupling term should be invariant under the transfor-
mations Yy—yY+m(w/3) and ¢—¢+nm, where m and n
are integers. Bruinsma and Aeppli formulated the ap-
propriate free energy and considered the fluctuation-
induced corrections to mean-field behavior for three-
dimensional systems. Their result indicates the existence
of two tricritical points, one for the transition between
the Sm-A phase (¥=0, ®=0) and the stacked hexatic
phase (V7#0, ®=0), and another for the transition be-
tween the Sm-A4 and the phase possessing both hexatic
and herringbone order (¥+0, ®+0). While arguments
based on the tricritical nature of the Sm- A —Hex-B tran-
sition are plausible, it is difficult to understand why seven
different liquid-crystal compounds and five binary mix-
tures, with very different Sm-A4 and Hex-B temperature
ranges, yield ¢=0.60%0.04 [7] and should all be in the
immediate vicinity of a particular thermodynamic point
[8].

To obtain further insight into the nature of this intri-
guing transition, we have conducted high-resolution
calorimetric investigations near the Sm- 4 —Hex-B transi-
tion of several nmOBC compounds in the form of free-
standing liquid-crystal films with thickness ranging
from two to a few hundred molecular layers. (nmOBC
refers to the n-alkyl-4'-n-alkyloxybiphenyl-4-carboxylate
homologous series.) In contrast to a broad heat-capacity
hump predicted for the two-dimensional XY topological
transition [9], the calorimetric investigations of two-layer
free-standing films of five different nmOBC compounds
yield very sharp heat-capacity peaks near the Sm-
A -Hex-B transition. No thermal hysteresis could be
detected to within the 10 mK experimental resolution.
Moreover, the two-layer film heat-capacity anomaly can
be described by a power-law expression with the critical
exponent @ =0.30%0.05 [10]. These experimental results
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indicate that the system cannot be described by the 2D
XY model [11], and that order, in addition to bond-
orientational order, may be established through the tran-
sition. Since herringbone order can be described by a
three-state Potts model, which is predicted to exhibit a
continuous transition with a=1 in two dimensions [12],
we have reconsidered Bruinsma and Aeppli’s model in
two dimensions.

To lowest order in ¥ and ®, one obtains the following
simplified Hamiltonian in a two-dimensional lattice:

H=—J, 3 cos(¢y—y;)—J, 3 cos(¢;—¢;)

(ij) {ij)

_J32 COS(!/},-—3¢,-) ’

where the coefficients J; and J, are the nearest-neighbor
({i,j)) coupling constants for the bond-orientational or-
der (¥) and herringbone order (®), respectively. The
coefficient J; denotes the coupling strength between these
two types of order at the same lattice site. We are in-
terested in situations in which ¥ and ® are coupled rela-
tively strongly, and therefore we have chosen J;=2.1
(larger than both J, and J,) for all of the simulations.

Let us first consider the following simple scenario.
Take J,>J, (say, J;,=1.0 and J,=0.3). At sufficiently
high temperatures (7 > J;), the system is in a completely
disordered phase. (The temperature of the system is
scaled with respect to the coupling constants.) For
J3>T>J,, the system remains disordered but the phase
factors (i; and ¢;) of the two order parameters become
coupled through the J; term. For 3J,/2<T <J,, bond-
orientational order is established, and the ordered state
corresponds to y; =; for all sites i and j [13]. Without
loss of generality, we can choose 1; =0. Consequently, in
this temperature range, there are degenerate minima of
the free energy at ¢, =<0, 27 /3, and 47 /3 [13]. Further
decreasing the temperature below 3J, /2 [14], causes the
J, term to single out one of the three values for ¢; to be
the lowest-energy state, leaving the other two degenerate
states at a higher value. Thus, for J;>>J, >3J,/2, the
model exhibits an XY transition at T,;~J; and the
three-state Potts transition at T,,=3J, /2 [15].

Employing standard Monte Carlo calculations on a
30X 30 lattice, we have obtained the heat-capacity data
as a function of temperature, shown in Fig. 1 for J;=1.0
and J,=0.3. During each simulation step, the angles ¢,
and ¢; were treated as nonconstrained, continuous vari-
ables. To ensure thermal equilibrium, 100000 Monte
Carlo steps were used for each temperature. As expect-
ed, no heat-capacity peak is discernible near T'=2.1.
From the preceding discussion, it is clear that the small
broad hump near 7=1.0 signals the XY transition due to
the J; term. The sharp peak located at 7=0.43 is ex-
pected to signal a transition into the state of three-state
Potts symmetry. This result has been confirmed by con-
ducting finite-size scaling analyses [16], using the follow-
ing lattice sizes: 8X8, 16X 16, 24X24, 30X 30, and
40X40. The analyses give the ratio a/v=0.44+0.05.
Employing the scaling relation dv=2—a (here d =2) for
the two-dimensional system, we obtain v=0.82+0.1 and
a=0.36%0.05, which are in good agreement with the
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FIG. 1. Temperature dependence of the heat capacity (C) for
J,=1.0,J,=0.3, and J;=2.1. The size of lattice is 30X 30.

theoretical calculated values v=2 and a=1 for the
three-state Potts transition in two dimensions [12].

By taking the values of J;=2.1 and J, =1.0 and vary-
ing the value of J, between O and %, the XY transition
(near T,;=1.0) is expected to be followed by a three-state
Potts transition (at T.,~3J,/2). The expected behavior
of the system for J, > 2 is not entirely clear. Is there a
single transition into the state with both herringbone and
hexatic order? If so, is it continuous or first order? Or
does the system continue to exhibit two separate transi-
tions? Our simulation results demonstrate that a single
continuous transition is obtained for J,>0.75 and that
two separate transitions are still apparent for
0.75>J,>%. In addition to the results shown in Fig. 1,
we have completed Monte Carlo simulations for
J,=0.67, 0.75, 0.85, 0.95, 1.4, and 1.6; part of these re-
sults are displayed in Fig. 2. Figure 3 shows a schematic
diagram of the phase transition sequences as a function of
J,. In the case of J,=0.67, a sharp heat-capacity peak
(T,,=0.90) with a small shoulder on the high-
temperature side is observed. Apparently, the transition
temperature (T,,) in the state with three-state Potts sym-
metry is noticeably reduced due to the small temperature
range of the hexatic (XY) ordered state. Unfortunately, it
is not possible to accurately determine the transition tem-
perature (T,;) of the XY transition. Assuming that the
value of T, is not affected by the proximity of the three-
state Potts transition, it is expected to be approximately
equal to 1 [17]. We have therefore used a dashed line in
Fig. 3 to represent part of the isotropic XY phase bound-
ary. For J,=0.75, the heat-capacity maximum occurs at
T=0.99 and the data also exhibit a small shoulder on the
high-temperature side of the larger peak. The cases in
which J,=0.85 and 0.95 yield only single, symmetric,
sharp peaks at T, =1.08 and 1.18, respectively. Finally,
a smaller and broader heat-capacity anomaly is observed
for J,=1.4 and 1.6 [18]. The nature of the transition has
been established by conducting successive heating and
cooling runs with J,=0.95. Since no thermal hysteresis
could be detected to within the resolution of the simula-
tion, the transition appears to be continuous.
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FIG. 2. Temperature dependence of the heat capacity (C).
The constants J;,=1.0 and J;=2.1 are fixed. The constant
J,=0.67, 0.75, 0.95, and 1.4 for curves (a), (b), (c), and (d), re-
spectively.

From Fig. 2, it is apparent that only a single large and
sharp heat-capacity anomaly is observable for a range of
J, values. At least this is the case for both J,=0.85 and
J,=0.95. Obviously, the transition temperature in-
creases more slowly for J, >Z than that responsible for
the transition into the three-state Potts state for J, <Z.
Finite-size scaling analyses with J, =0.67, 0.75, 0.85, and
0.95 and lattice sizes 8 X8, 16X 16, 24 X24, 30X 30, and
40X 40 have also been carried out. The scaling analyses
yield a/v=0.44+0.05, which is in good agreement with
the ratio characterizing the three-state Potts transition in
two dimensions. This indicates that a=1 can be found
in some ranges of the J,-J,-J; parameter spaces [19].

To identify the nature of the state just above the single
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FIG. 3. Schematic of the phase diagram: transition tempera-
ture vs J, with J;=1.0 and J;=2.1. The solid dots are deter-
mined by the peak positions of heat-capacity anomalies. The
narrow line is determined by the relationship T,,=3J,/2. The
heavy isotropic XY transition line is assumed to be at T=1.0.
However, as the temperature range for the XY state diminishes,
it is very difficult to separate the small heat-capacity hump for
the XY transition from the large heat-capacity peak associated
with the three-state Potts transition. We have therefore used a
dashed line in this region to indicate this uncertainty.
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heat-capacity peak (with J,=0.95), histograms for ¥;
and ¢; at T=1.20 have been plotted in Fig. 4(a). This
temperature is only slightly above the transition tempera-
ture (T,=1.18). To within one standard deviation of the
mean value, these histograms demonstrate that the phase
above T, is indeed a disordered one. On the other hand,
slightly below T, (say, T=1.16) we found that both ¥,
and ¢; exhibit some degree of order, with peaks in the
histogram shown in Fig. 4(b). Consequently, this transi-
tion establishes both hexatic and herringbone order, and
is different from the simple three-state Potts transition.

In summary, employing a Monte Carlo simulation, we
have investigated the phase diagram associated with the
Hamiltonian proposed by Bruinsma and Aeppli. With
J1=1.0 and J;=2.1, the simulation results demonstrate
that for 1.4 >J, >0.75 both 9; and ¢; can simultaneously
establish order through a transition that is continuous to
within the resolution of our simulation. Furthermore,
the heat-capacity critical exponent characterizing this
single transition has a value of @=0.3. To the best of our
knowledge, this is one of the ways to simultaneously es-
tablish the order of two physical parameters through a
single continuous transition [19]. This mechanism may
be responsible for the experimental results obtained from
two-layer free-standing liquid-crystal films near the Sm-
A —Hex-B phase of several compounds in the nmOBC
homologous series. Experimentally, we have found that
the Sm-A4 -Hex-B transition of two-layer nmOBC
liquid-crystal films is characterized by a single heat-
capacity peak with critical exponent a=0.30%0.05 [10].
It should be noted that the transition occurring in the
range 0.75<J,<1.4 (see Fig. 3) is not a simple three-
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FIG. 4. Histograms for the variables ¢; (open squares) and ;
(solid dots). Although both ¢; and i, are treated as continuous
variables in the simulation, to obtain these histograms we have
divided 27 into 63 segments. (a) and (b) are the cases for
T=120 (>T,) and T=1.16 (<T,), respectively. Here
J,=1.0,J,=0.95,and J;=2.1
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state Potts transition. It is therefore possible that the
corresponding transition in three dimensions may be con-
tinuous, unlike the simple three-state Potts transition
which exhibits a first-order phase transition in 3D [20].
By adding a weak interlayer coupling term into the Ham-
iltonian, we are currently investigating this point to see if
the results agree with our experimental data on the bulk
Sm- A ~Hex-B transition. Further simulation studies in
other regions of parameter space are also in progress.
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